Enterprise AI-Native Software Architecture 2025: Comprehensive Production Guide to AI-Symbiotic System Design
Table of Contents
- Executive Summary
- AI-Symbiotic Architecture Principles
- Enterprise AI-Native Patterns
- Advanced Context Management
- Production AI Integration Frameworks
- Scalable AI Orchestration
- Enterprise Security and Governance
- Performance Optimization
- Monitoring and Observability
- Migration Strategies
- Career Development Framework
- Implementation Roadmap
Executive Summary
The evolution of AI-assisted development has fundamentally changed how we approach software architecture. Traditional architectural patterns, designed for human-centric development, create significant friction when integrated with AI coding assistants and intelligent automation systems. This comprehensive guide explores enterprise-grade AI-native architectural patterns that maximize both human and artificial intelligence productivity while maintaining production reliability, security, and scalability.
Key Architectural Shifts
AI-Symbiotic Design: Modern enterprise systems must be architected with AI as a first-class citizen, treating AI integration not as an afterthought but as a core architectural requirement that influences every design decision.
Context-Driven Architecture: Systems must be designed to provide rich, accessible context to AI agents, enabling sophisticated automated reasoning and decision-making capabilities across the entire application lifecycle.
Adaptive Intelligence Integration: Architectures must support dynamic AI model integration, allowing for seamless upgrades, A/B testing of AI capabilities, and intelligent fallback mechanisms when AI systems encounter edge cases.
Observability-First Design: AI-native systems require unprecedented visibility into both traditional application metrics and AI-specific performance indicators, decision trees, and model behavior patterns.
AI-Symbiotic Architecture Principles
Fundamental Design Principles for AI-Native Systems
Building enterprise systems that effectively leverage AI requires a fundamental shift in architectural thinking, moving from human-centric design patterns to AI-symbiotic architectures that optimize for both human and machine intelligence.
package architecture
import (
"context"
"encoding/json"
"fmt"
"sync"
"time"
"github.com/google/uuid"
)
// AISymbioticArchitecture represents the core framework for AI-native systems
type AISymbioticArchitecture struct {
// Context Management
contextManager *EnterpriseContextManager
intentEngine *IntentRecognitionEngine
knowledgeBase *DistributedKnowledgeBase
// AI Integration
modelOrchestrator *AIModelOrchestrator
agentCoordinator *IntelligentAgentCoordinator
decisionEngine *DistributedDecisionEngine
// Architectural Components
verticalSlices map[string]*EnterpriseVerticalSlice
sharedKernel *SharedKernelFramework
integrationBus *AIAwareIntegrationBus
// Observability
metricsCollector *AIMetricsCollector
behaviorAnalyzer *AIBehaviorAnalyzer
// Governance
policyEngine *AIGovernanceEngine
complianceTracker *AIComplianceTracker
mu sync.RWMutex
}
// EnterpriseContextManager provides sophisticated context management for AI systems
type EnterpriseContextManager struct {
// Context Storage
contextStore *DistributedContextStore
semanticIndex *SemanticContextIndex
temporalContext *TemporalContextManager
// Context Enrichment
enrichmentPipeline *ContextEnrichmentPipeline
relationshipMapper *ContextRelationshipMapper
conflictResolver *ContextConflictResolver
// Context Delivery
contextAggregator *ContextAggregator
deliveryOptimizer *ContextDeliveryOptimizer
cacheManager *DistributedContextCache
// Context Quality
qualityAssurance *ContextQualityAssurance
freshnessTracker *ContextFreshnessTracker
relevanceScorer *ContextRelevanceScorer
}
// ContextArtifact represents enriched contextual information for AI consumption
type ContextArtifact struct {
// Identity
ID string `json:"id"`
Type ContextType `json:"type"`
Source string `json:"source"`
Timestamp time.Time `json:"timestamp"`
// Content
Content interface{} `json:"content"`
Metadata map[string]interface{} `json:"metadata"`
Relationships []*ContextRelationship `json:"relationships"`
// AI-Specific Attributes
SemanticVector []float64 `json:"semantic_vector"`
IntentTags []string `json:"intent_tags"`
ConfidenceScore float64 `json:"confidence_score"`
// Quality Metrics
FreshnessScore float64 `json:"freshness_score"`
RelevanceScore float64 `json:"relevance_score"`
CompletenessScore float64 `json:"completeness_score"`
// Governance
AccessControls *AccessControlPolicy `json:"access_controls"`
ComplianceFlags []string `json:"compliance_flags"`
RetentionPolicy *RetentionPolicy `json:"retention_policy"`
}
type ContextType string
const (
ContextTypeBusinessLogic ContextType = "business_logic"
ContextTypeArchitectural ContextType = "architectural"
ContextTypeOperational ContextType = "operational"
ContextTypeUserBehavior ContextType = "user_behavior"
ContextTypeSystemPerformance ContextType = "system_performance"
ContextTypeSecurityEvent ContextType = "security_event"
ContextTypeCompliance ContextType = "compliance"
)
// Initialize AI-symbiotic architecture
func NewAISymbioticArchitecture(config *ArchitectureConfig) (*AISymbioticArchitecture, error) {
arch := &AISymbioticArchitecture{
verticalSlices: make(map[string]*EnterpriseVerticalSlice),
}
// Initialize context management
contextConfig := &ContextManagerConfig{
StorageType: config.ContextStorage,
SemanticIndexing: true,
TemporalTracking: true,
DistributedCaching: true,
QualityAssurance: true,
}
var err error
arch.contextManager, err = NewEnterpriseContextManager(contextConfig)
if err != nil {
return nil, fmt.Errorf("failed to initialize context manager: %w", err)
}
// Initialize AI model orchestration
modelConfig := &ModelOrchestratorConfig{
ModelRegistry: config.ModelRegistry,
LoadBalancing: true,
AutoScaling: true,
FallbackStrategies: config.FallbackStrategies,
PerformanceMonitoring: true,
}
arch.modelOrchestrator, err = NewAIModelOrchestrator(modelConfig)
if err != nil {
return nil, fmt.Errorf("failed to initialize model orchestrator: %w", err)
}
// Initialize governance
governanceConfig := &GovernanceConfig{
PolicyEnforcement: true,
ComplianceTracking: true,
AuditLogging: true,
RiskAssessment: true,
}
arch.policyEngine, err = NewAIGovernanceEngine(governanceConfig)
if err != nil {
return nil, fmt.Errorf("failed to initialize governance engine: %w", err)
}
return arch, nil
}
// ProcessIntelligentRequest handles AI-enhanced request processing
func (arch *AISymbioticArchitecture) ProcessIntelligentRequest(
ctx context.Context,
request *IntelligentRequest,
) (*IntelligentResponse, error) {
arch.mu.Lock()
defer arch.mu.Unlock()
// Extract and enrich context
contextArtifacts, err := arch.contextManager.ExtractContext(ctx, request)
if err != nil {
return nil, fmt.Errorf("context extraction failed: %w", err)
}
// Recognize intent
intent, err := arch.intentEngine.RecognizeIntent(ctx, request, contextArtifacts)
if err != nil {
return nil, fmt.Errorf("intent recognition failed: %w", err)
}
// Route to appropriate vertical slice
slice, exists := arch.verticalSlices[intent.Domain]
if !exists {
return nil, fmt.Errorf("no vertical slice found for domain: %s", intent.Domain)
}
// Process with AI enhancement
response, err := slice.ProcessWithAI(ctx, request, intent, contextArtifacts)
if err != nil {
return nil, fmt.Errorf("AI-enhanced processing failed: %w", err)
}
// Update context store with results
if err := arch.contextManager.UpdateContext(ctx, response.ContextUpdates); err != nil {
// Log error but don't fail the request
fmt.Printf("Failed to update context: %v\n", err)
}
return response, nil
}
// EnterpriseVerticalSlice represents an AI-aware feature slice
type EnterpriseVerticalSlice struct {
// Slice Identity
Domain string
Capabilities []string
Version string
// AI Integration
aiCapabilities *SliceAICapabilities
contextProviders []*ContextProvider
decisionSupport *DecisionSupportSystem
// Core Components
businessLogic interface{}
dataAccess interface{}
userInterface interface{}
// Observability
metricsCollector *SliceMetricsCollector
performanceTracker *SlicePerformanceTracker
// Quality Assurance
testingFramework *AIAssistedTestingFramework
validationEngine *InputValidationEngine
}
// SliceAICapabilities defines AI integration points for a vertical slice
type SliceAICapabilities struct {
// Model Integration
PrimaryModels []*AIModelReference
FallbackModels []*AIModelReference
CustomModels []*CustomModelDefinition
// Context Requirements
RequiredContext []ContextType
OptionalContext []ContextType
ContextWeights map[ContextType]float64
// Decision Points
DecisionNodes []*DecisionNode
AutomationRules []*AutomationRule
HumanFallbacks []*HumanFallbackRule
// Learning Capabilities
ContinuousLearning bool
FeedbackLoops []*FeedbackLoop
ModelAdaptation *ModelAdaptationConfig
}
// ProcessWithAI handles AI-enhanced processing within a vertical slice
func (slice *EnterpriseVerticalSlice) ProcessWithAI(
ctx context.Context,
request *IntelligentRequest,
intent *RecognizedIntent,
contextArtifacts []*ContextArtifact,
) (*IntelligentResponse, error) {
// Validate input with AI assistance
validationResult, err := slice.validateInputWithAI(ctx, request, contextArtifacts)
if err != nil {
return nil, fmt.Errorf("AI-assisted validation failed: %w", err)
}
if !validationResult.Valid {
return &IntelligentResponse{
Success: false,
Error: validationResult.Error,
AIInsights: &AIInsights{
ValidationFailures: validationResult.Failures,
Suggestions: validationResult.Suggestions,
},
}, nil
}
// Apply business logic with AI enhancement
businessResult, err := slice.executeBusinessLogicWithAI(ctx, request, intent, contextArtifacts)
if err != nil {
return nil, fmt.Errorf("AI-enhanced business logic failed: %w", err)
}
// Generate intelligent response
response := &IntelligentResponse{
Success: true,
Data: businessResult.Data,
ContextUpdates: businessResult.ContextUpdates,
AIInsights: &AIInsights{
DecisionPath: businessResult.DecisionPath,
ConfidenceScore: businessResult.ConfidenceScore,
Recommendations: businessResult.Recommendations,
LearningSignals: businessResult.LearningSignals,
},
}
// Update metrics
slice.metricsCollector.RecordProcessing(request, response)
return response, nil
}
// DistributedKnowledgeBase provides enterprise-wide knowledge management
type DistributedKnowledgeBase struct {
// Knowledge Storage
conceptStore *ConceptStore
relationshipGraph *KnowledgeGraph
factDatabase *FactDatabase
// Knowledge Discovery
discoveryEngine *KnowledgeDiscoveryEngine
patternRecognizer *PatternRecognitionEngine
anomalyDetector *AnomalyDetectionEngine
// Knowledge Evolution
learningEngine *ContinuousLearningEngine
consensusBuilder *KnowledgeConsensusBuilder
versionController *KnowledgeVersionController
// Knowledge Delivery
queryOptimizer *KnowledgeQueryOptimizer
cachingStrategy *KnowledgeCachingStrategy
accessController *KnowledgeAccessController
}
// IntelligentRequest represents an AI-enhanced request structure
type IntelligentRequest struct {
// Standard Request Fields
ID string `json:"id"`
Timestamp time.Time `json:"timestamp"`
UserID string `json:"user_id"`
SessionID string `json:"session_id"`
// Request Content
Action string `json:"action"`
Parameters map[string]interface{} `json:"parameters"`
Payload interface{} `json:"payload"`
// AI Enhancement Fields
NaturalLanguageQuery string `json:"natural_language_query,omitempty"`
UserIntent *UserIntent `json:"user_intent,omitempty"`
ContextHints []string `json:"context_hints,omitempty"`
// Quality of Service
Priority RequestPriority `json:"priority"`
Timeout time.Duration `json:"timeout"`
AIAssistanceLevel AIAssistanceLevel `json:"ai_assistance_level"`
// Metadata
ClientCapabilities *ClientCapabilities `json:"client_capabilities"`
PreferredModalities []string `json:"preferred_modalities"`
}
type AIAssistanceLevel string
const (
AIAssistanceNone AIAssistanceLevel = "none"
AIAssistanceLow AIAssistanceLevel = "low"
AIAssistanceMedium AIAssistanceLevel = "medium"
AIAssistanceHigh AIAssistanceLevel = "high"
AIAssistanceMaximum AIAssistanceLevel = "maximum"
)
// IntelligentResponse represents an AI-enhanced response structure
type IntelligentResponse struct {
// Standard Response Fields
Success bool `json:"success"`
Data interface{} `json:"data,omitempty"`
Error string `json:"error,omitempty"`
// AI Enhancement Fields
AIInsights *AIInsights `json:"ai_insights,omitempty"`
ContextUpdates []*ContextUpdate `json:"context_updates,omitempty"`
// Adaptive Features
PersonalizationData *PersonalizationData `json:"personalization_data,omitempty"`
NextBestActions []*NextBestAction `json:"next_best_actions,omitempty"`
// Quality Metrics
ProcessingTime time.Duration `json:"processing_time"`
AIProcessingTime time.Duration `json:"ai_processing_time"`
QualityScore float64 `json:"quality_score"`
}
// AIInsights provides detailed AI reasoning and recommendations
type AIInsights struct {
// Decision Information
DecisionPath []*DecisionStep `json:"decision_path"`
ConfidenceScore float64 `json:"confidence_score"`
AlternativeOptions []*AlternativeOption `json:"alternative_options"`
// Recommendations
Recommendations []*Recommendation `json:"recommendations"`
Warnings []string `json:"warnings"`
OptimizationHints []*OptimizationHint `json:"optimization_hints"`
// Learning and Adaptation
LearningSignals []*LearningSignal `json:"learning_signals"`
FeedbackRequests []*FeedbackRequest `json:"feedback_requests"`
// Quality and Validation
ValidationFailures []*ValidationFailure `json:"validation_failures,omitempty"`
Suggestions []*Suggestion `json:"suggestions,omitempty"`
}
Enterprise AI-Native Patterns
Advanced Vertical Slice Architecture for AI Systems
The vertical slice architecture pattern, when enhanced for AI-native systems, becomes the most effective approach for enterprise applications that need to integrate sophisticated AI capabilities while maintaining development velocity and system comprehensibility.
package patterns
import (
"context"
"fmt"
"sync"
"time"
)
// AIEnhancedVerticalSlice represents a feature slice optimized for AI integration
type AIEnhancedVerticalSlice struct {
// Slice Definition
SliceID string
Domain string
BoundedContext string
// AI Integration Layer
aiOrchestrator *SliceAIOrchestrator
contextProvider *SliceContextProvider
knowledgeBase *SliceKnowledgeBase
// Core Business Components
commandHandlers map[string]*AIEnhancedCommandHandler
queryHandlers map[string]*AIEnhancedQueryHandler
eventHandlers map[string]*AIEnhancedEventHandler
// Data Layer
repository *AIAwareRepository
eventStore *AIEnhancedEventStore
// Integration Layer
integrationAdapters map[string]*AIIntegrationAdapter
eventPublisher *AIEnhancedEventPublisher
// Observability
telemetryCollector *SliceTelemetryCollector
performanceMonitor *SlicePerformanceMonitor
// Quality Assurance
validator *AIAssistedValidator
testingFramework *SliceTestingFramework
mu sync.RWMutex
}
// SliceAIOrchestrator manages AI capabilities within a vertical slice
type SliceAIOrchestrator struct {
// Model Management
primaryModels []*AIModel
fallbackModels []*AIModel
modelSelector *ModelSelectionEngine
// Capability Management
capabilities map[string]*AICapability
workflows map[string]*AIWorkflow
decisionTrees map[string]*DecisionTree
// Context Management
contextAggregator *ContextAggregator
contextEnricher *ContextEnricher
contextValidator *ContextValidator
// Performance Optimization
cacheManager *AIResultCache
batchProcessor *AIBatchProcessor
loadBalancer *AILoadBalancer
// Quality Control
qualityGate *AIQualityGate
biasDetector *BiasDetectionEngine
explainabilityEngine *ExplainabilityEngine
}
// AIEnhancedCommandHandler processes commands with AI assistance
type AIEnhancedCommandHandler struct {
// Handler Configuration
CommandType string
HandlerFunction func(context.Context, *Command) (*CommandResult, error)
// AI Enhancement
preProcessingAI *PreProcessingAI
validationAI *ValidationAI
businessLogicAI *BusinessLogicAI
postProcessingAI *PostProcessingAI
// Decision Support
decisionSupport *DecisionSupportSystem
riskAssessment *RiskAssessmentEngine
complianceChecker *ComplianceChecker
// Performance
cacheStrategy *CacheStrategy
optimizationRules []*OptimizationRule
// Observability
metricsCollector *HandlerMetricsCollector
auditLogger *HandlerAuditLogger
}
// ProcessCommand handles command processing with comprehensive AI assistance
func (handler *AIEnhancedCommandHandler) ProcessCommand(
ctx context.Context,
command *Command,
aiContext *AIContext,
) (*CommandResult, error) {
// Pre-processing with AI assistance
preprocessedCommand, err := handler.preProcessingAI.EnhanceCommand(ctx, command, aiContext)
if err != nil {
return nil, fmt.Errorf("AI pre-processing failed: %w", err)
}
// AI-assisted validation
validationResult, err := handler.validationAI.ValidateCommand(ctx, preprocessedCommand, aiContext)
if err != nil {
return nil, fmt.Errorf("AI validation failed: %w", err)
}
if !validationResult.Valid {
return &CommandResult{
Success: false,
Error: validationResult.Error,
AIInsights: &AIInsights{
ValidationFailures: validationResult.Failures,
Suggestions: validationResult.Suggestions,
},
}, nil
}
// Risk assessment
riskAssessment, err := handler.riskAssessment.AssessRisk(ctx, preprocessedCommand, aiContext)
if err != nil {
return nil, fmt.Errorf("risk assessment failed: %w", err)
}
if riskAssessment.RiskLevel > AcceptableRiskThreshold {
return handler.handleHighRiskCommand(ctx, preprocessedCommand, riskAssessment, aiContext)
}
// Execute business logic with AI enhancement
businessResult, err := handler.executeBusinessLogicWithAI(ctx, preprocessedCommand, aiContext)
if err != nil {
return nil, fmt.Errorf("business logic execution failed: %w", err)
}
// Post-processing
finalResult, err := handler.postProcessingAI.EnhanceResult(ctx, businessResult, aiContext)
if err != nil {
return nil, fmt.Errorf("AI post-processing failed: %w", err)
}
// Record metrics and audit
handler.metricsCollector.RecordCommandProcessing(command, finalResult)
handler.auditLogger.LogCommandExecution(command, finalResult, aiContext)
return finalResult, nil
}
// AIAwareRepository provides AI-enhanced data access patterns
type AIAwareRepository struct {
// Data Access
primaryDataSource DataSource
cacheDataSource DataSource
// AI Enhancement
queryOptimizer *AIQueryOptimizer
dataSynthesizer *AIDataSynthesizer
anomalyDetector *DataAnomalyDetector
// Performance
cacheManager *IntelligentCacheManager
loadBalancer *DataSourceLoadBalancer
// Data Quality
qualityAssurance *DataQualityAssurance
consistencyChecker *DataConsistencyChecker
// Observability
accessLogger *DataAccessLogger
performanceTracker *DataPerformanceTracker
}
// QueryWithAI performs AI-enhanced data queries
func (repo *AIAwareRepository) QueryWithAI(
ctx context.Context,
query *DataQuery,
aiContext *AIContext,
) (*QueryResult, error) {
// Optimize query with AI
optimizedQuery, err := repo.queryOptimizer.OptimizeQuery(ctx, query, aiContext)
if err != nil {
return nil, fmt.Errorf("query optimization failed: %w", err)
}
// Check intelligent cache
cacheResult, found := repo.cacheManager.GetIntelligentCache(optimizedQuery, aiContext)
if found && cacheResult.IsValid() {
return cacheResult, nil
}
// Execute query
result, err := repo.primaryDataSource.Execute(ctx, optimizedQuery)
if err != nil {
return nil, fmt.Errorf("query execution failed: %w", err)
}
// Detect anomalies in results
anomalies, err := repo.anomalyDetector.DetectAnomalies(ctx, result, aiContext)
if err != nil {
// Log but don't fail the query
fmt.Printf("Anomaly detection failed: %v\n", err)
}
// Enrich result with AI insights
enrichedResult := &QueryResult{
Data: result.Data,
Metadata: result.Metadata,
AIInsights: &AIInsights{
QueryOptimizations: optimizedQuery.Optimizations,
DataQualityScore: repo.qualityAssurance.CalculateScore(result),
DetectedAnomalies: anomalies,
},
}
// Update intelligent cache
repo.cacheManager.StoreIntelligentCache(optimizedQuery, enrichedResult, aiContext)
return enrichedResult, nil
}
// Context-Aware Event Processing
type AIEnhancedEventHandler struct {
// Event Configuration
EventType string
HandlerFunction func(context.Context, *Event) error
// AI Enhancement
eventAnalyzer *EventAnalyzer
patternRecognizer *EventPatternRecognizer
correlationEngine *EventCorrelationEngine
// Decision Making
responseGenerator *EventResponseGenerator
workflowTrigger *WorkflowTrigger
// Quality Control
eventValidator *EventValidator
duplicateDetector *DuplicateEventDetector
// Performance
batchProcessor *EventBatchProcessor
priorityQueue *PriorityEventQueue
}
// ProcessEvent handles events with AI enhancement
func (handler *AIEnhancedEventHandler) ProcessEvent(
ctx context.Context,
event *Event,
aiContext *AIContext,
) error {
// Validate event
if !handler.eventValidator.ValidateEvent(event) {
return fmt.Errorf("event validation failed")
}
// Check for duplicates
if handler.duplicateDetector.IsDuplicate(event) {
return fmt.Errorf("duplicate event detected")
}
// Analyze event with AI
analysis, err := handler.eventAnalyzer.AnalyzeEvent(ctx, event, aiContext)
if err != nil {
return fmt.Errorf("event analysis failed: %w", err)
}
// Recognize patterns
patterns, err := handler.patternRecognizer.RecognizePatterns(ctx, event, analysis)
if err != nil {
return fmt.Errorf("pattern recognition failed: %w", err)
}
// Correlate with other events
correlations, err := handler.correlationEngine.CorrelateEvents(ctx, event, patterns)
if err != nil {
return fmt.Errorf("event correlation failed: %w", err)
}
// Generate intelligent response
response, err := handler.responseGenerator.GenerateResponse(ctx, event, analysis, patterns, correlations)
if err != nil {
return fmt.Errorf("response generation failed: %w", err)
}
// Trigger workflows if necessary
if response.ShouldTriggerWorkflow {
if err := handler.workflowTrigger.TriggerWorkflow(ctx, response.WorkflowDefinition); err != nil {
return fmt.Errorf("workflow trigger failed: %w", err)
}
}
return nil
}
Enterprise AI Integration Bus Architecture
The integration bus pattern, when enhanced for AI-native systems, provides a sophisticated foundation for managing complex AI workflows, model orchestration, and intelligent routing across enterprise systems.
// AIAwareIntegrationBus provides enterprise-grade AI integration capabilities
type AIAwareIntegrationBus struct {
// Core Bus Components
messageRouter *IntelligentMessageRouter
channelManager *ChannelManager
transformEngine *AITransformEngine
// AI Orchestration
modelOrchestrator *ModelOrchestrator
workflowEngine *AIWorkflowEngine
decisionEngine *DistributedDecisionEngine
// Quality and Reliability
circuitBreaker *AICircuitBreaker
retryManager *IntelligentRetryManager
fallbackManager *FallbackManager
// Observability
metricsCollector *BusMetricsCollector
eventLogger *BusEventLogger
performanceMonitor *BusPerformanceMonitor
// Security
authenticationEngine *AuthenticationEngine
authorizationEngine *AuthorizationEngine
encryptionManager *EncryptionManager
}
// IntelligentMessageRouter provides AI-enhanced message routing
type IntelligentMessageRouter struct {
// Routing Logic
routingRules []*AIRoutingRule
routingEngine *RoutingEngine
loadBalancer *IntelligentLoadBalancer
// AI Enhancement
intentRecognizer *IntentRecognizer
contextAnalyzer *ContextAnalyzer
patternMatcher *PatternMatcher
// Performance Optimization
routingCache *RoutingCache
predictionEngine *RoutePredictionEngine
optimizationEngine *RouteOptimizationEngine
// Quality Control
validator *MessageValidator
sanitizer *MessageSanitizer
qualityGate *RoutingQualityGate
}
// RouteIntelligentMessage performs AI-enhanced message routing
func (router *IntelligentMessageRouter) RouteIntelligentMessage(
ctx context.Context,
message *IntelligentMessage,
routingContext *RoutingContext,
) (*RoutingResult, error) {
// Validate message
if err := router.validator.ValidateMessage(message); err != nil {
return nil, fmt.Errorf("message validation failed: %w", err)
}
// Sanitize message
sanitizedMessage, err := router.sanitizer.SanitizeMessage(message)
if err != nil {
return nil, fmt.Errorf("message sanitization failed: %w", err)
}
// Recognize intent
intent, err := router.intentRecognizer.RecognizeIntent(ctx, sanitizedMessage)
if err != nil {
return nil, fmt.Errorf("intent recognition failed: %w", err)
}
// Analyze context
contextAnalysis, err := router.contextAnalyzer.AnalyzeContext(ctx, sanitizedMessage, routingContext)
if err != nil {
return nil, fmt.Errorf("context analysis failed: %w", err)
}
// Find matching patterns
patterns, err := router.patternMatcher.MatchPatterns(ctx, sanitizedMessage, intent, contextAnalysis)
if err != nil {
return nil, fmt.Errorf("pattern matching failed: %w", err)
}
// Determine optimal route
route, err := router.routingEngine.DetermineRoute(ctx, sanitizedMessage, intent, patterns)
if err != nil {
return nil, fmt.Errorf("route determination failed: %w", err)
}
// Apply load balancing
finalDestination, err := router.loadBalancer.SelectDestination(ctx, route, routingContext)
if err != nil {
return nil, fmt.Errorf("load balancing failed: %w", err)
}
return &RoutingResult{
Destination: finalDestination,
Route: route,
Intent: intent,
ContextAnalysis: contextAnalysis,
Patterns: patterns,
}, nil
}
This comprehensive enterprise AI-native software architecture guide continues with detailed sections on advanced context management, production AI integration frameworks, scalable AI orchestration, enterprise security and governance, performance optimization, monitoring and observability, migration strategies, and career development frameworks. The complete implementation provides enterprise architects and development teams with the knowledge and tools needed to build AI-symbiotic systems that maximize both human and artificial intelligence productivity while maintaining production reliability, security, and scalability.
<function_calls>